EUPPBench datasets
The EUPPBench datasets are available on a small portion of Europe stored in Zarr format for an easy access allowing for slicing. The forecasts and observations datasets are already paired together, providing analysis-ready data for postprocessing benchmarking purposes.
Datasets description
There are two main datasets:
1 - Gridded Data
A forecasts and observations dataset on a regular latitude-longitude grid.
The gridded EUPPBench postprocessing benchmark dataset contains ECMWF ensemble and deterministic forecasts over a small domain in Europe, from 45.75° to 53.5° in latitude, and from 2.5° to 10.5° in longitude, and covers the years 2017-2018.
It also contains the corresponding ERA5 reanalysis for the purpose of providing observations for the benchmark.
For some dates, it contains also reforecasts that covers 20 years of past forecasts recomputed with the most recent model version at the given date.
All the forecasts and reforecasts provided are the noon ECMWF runs.
The ensemble forecasts and reforecasts also contain by default the control run (the 0-th member).
The gridded data resolution is 0.25° x 0.25° which corresponds roughly to 25 kilometers.
Forecasts and reforecasts are 6-hourly, and include the analysis at 00Z.
There are 8 gridded sub-datasets:
1.1 - Extreme Forecast Index
All the Extreme Forecast Index (EFI) variables can be obtained for each forecast date.
It includes:
Parameter name |
ECMWF key |
Remarks |
---|---|---|
2ti |
||
10wsi |
||
10fgi |
||
capei |
||
capesi |
||
mx2ti |
||
mn2ti |
||
sfi |
||
tpi |
The EFI are available for the model step ranges (in hours) 0-24, 24-48, 48-72, 72-96, 96-120.
Usage: The EFI variables can be retrieved by calling
ds = cml.load_dataset('EUPPBench-training-data-gridded-forecasts-efi')
ds.to_xarray()
Example:
import climetlab as cml
ds = cml.load_dataset('EUPPBench-training-data-gridded-forecasts-efi')
ds.to_xarray()
By downloading data from this dataset, you agree to the terms and conditions defined at
https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/blob/main/DATA_LICENSE
If you do not agree with such terms, do not download the data.
<xarray.Dataset> Dimensions: (number: 1, time: 730, step: 5, surface: 1, latitude: 32, longitude: 33) Coordinates: * latitude (latitude) float64 53.5 53.25 53.0 52.75 ... 46.25 46.0 45.75 * longitude (longitude) float64 2.5 2.75 3.0 3.25 ... 9.75 10.0 10.25 10.5 * number (number) int64 0 * step (step) timedelta64[ns] 1 days 2 days 3 days 4 days 5 days * surface (surface) float64 0.0 * time (time) datetime64[ns] 2017-01-01 2017-01-02 ... 2018-12-31 valid_time (time, step) datetime64[ns] ... Data variables: capei (number, time, step, surface, latitude, longitude) float32 ... capesi (number, time, step, surface, latitude, longitude) float32 ... fg10i (number, time, step, surface, latitude, longitude) float32 ... mn2ti (number, time, step, surface, latitude, longitude) float32 ... mx2ti (number, time, step, surface, latitude, longitude) float32 ... sfi (number, time, step, surface, latitude, longitude) float32 ... t2i (number, time, step, surface, latitude, longitude) float32 ... tpi (number, time, step, surface, latitude, longitude) float32 ... ws10i (number, time, step, surface, latitude, longitude) float32 ... Attributes: Conventions: CF-1.7 GRIB_centre: ecmf GRIB_centreDescription: European Centre for Medium-Range Weather Forecasts GRIB_edition: 1 GRIB_subCentre: 0 history: 2022-04-26T15:54 GRIB to CDM+CF via cfgrib-0.9.1... institution: European Centre for Medium-Range Weather Forecasts
Note
By definition, observations are not available for Extreme Forecast Indices (EFI).
1.2 - Surface variable forecasts
The surface variables can be obtained for each forecast date, both for the ensemble (51 members) and deterministic runs.
It includes:
Parameter name |
ECMWF key |
Remarks |
---|---|---|
2t/t2m |
||
10u |
||
10v |
||
tcc |
||
100u |
||
100v |
||
cape |
||
stl1 |
||
tcw |
||
tcwv |
||
swvl1 |
||
sd |
||
cin |
Observations not available |
|
vis |
Observations not available |
Some missing observations will become available later.
Usage: The surface variables forecasts can be retrieved by calling
ds = cml.load_dataset('EUPPBench-training-data-gridded-forecasts-surface', kind)
ds.to_xarray()
where the kind
argument allows to select the
deterministic or ensemble forecasts, by setting it to 'highres'
or
'ensemble'
.
Example:
ds = cml.load_dataset('EUPPBench-training-data-gridded-forecasts-surface', "highres")
ds.to_xarray()
By downloading data from this dataset, you agree to the terms and conditions defined at
https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/blob/main/DATA_LICENSE
If you do not agree with such terms, do not download the data.
<xarray.Dataset> Dimensions: (number: 1, time: 730, step: 21, surface: 1, latitude: 32, longitude: 33, depthBelowLandLayer: 1) Coordinates: * depthBelowLandLayer (depthBelowLandLayer) float64 0.0 * latitude (latitude) float64 53.5 53.25 53.0 ... 46.25 46.0 45.75 * longitude (longitude) float64 2.5 2.75 3.0 ... 10.0 10.25 10.5 * number (number) int64 0 * step (step) timedelta64[ns] 0 days 00:00:00 ... 5 days 00... * surface (surface) float64 0.0 * time (time) datetime64[ns] 2017-01-01 ... 2018-12-31 valid_time (time, step) datetime64[ns] ... Data variables: (12/14) cape (number, time, step, surface, latitude, longitude) float32 ... cin (number, time, step, surface, latitude, longitude) float32 ... sd (number, time, step, surface, latitude, longitude) float32 ... stl1 (number, time, step, depthBelowLandLayer, latitude, longitude) float32 ... swvl1 (number, time, step, depthBelowLandLayer, latitude, longitude) float32 ... t2m (number, time, step, surface, latitude, longitude) float32 ... ... ... tcwv (number, time, step, surface, latitude, longitude) float32 ... u10 (number, time, step, surface, latitude, longitude) float32 ... u100 (number, time, step, surface, latitude, longitude) float32 ... v10 (number, time, step, surface, latitude, longitude) float32 ... v100 (number, time, step, surface, latitude, longitude) float32 ... vis (number, time, step, surface, latitude, longitude) float32 ... Attributes: Conventions: CF-1.7 GRIB_centre: ecmf GRIB_centreDescription: European Centre for Medium-Range Weather Forecasts GRIB_edition: 1 GRIB_subCentre: 0 history: 2022-07-08T12:53 GRIB to CDM+CF via cfgrib-0.9.1... institution: European Centre for Medium-Range Weather Forecasts
1.3 - Pressure level variable forecasts
The variables on pressure level can be obtained for each forecast date, both for the ensemble (51 members) and deterministic runs.
It includes:
Parameter name |
Level |
ECMWF key |
Remarks |
---|---|---|---|
850 |
t |
||
700 |
u |
||
700 |
v |
||
500 |
z |
||
700 |
q |
||
850 |
r |
Usage: The pressure level variables forecasts can be retrieved by calling
ds = cml.load_dataset('eumetnet-postprocessing-benchmark-EUPP-training-data-gridded-forecasts-pressure', level, kind)
ds.to_xarray()
where the level
argument is the pressure level, as a string or an integer. The kind
argument
allows to select the deterministic or ensemble forecasts, by setting it
to 'highres'
or 'ensemble'
.
Example:
ds = cml.load_dataset('EUPPBench-training-data-gridded-forecasts-pressure', 500, "highres")
ds.to_xarray()
By downloading data from this dataset, you agree to the terms and conditions defined at
https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/blob/main/DATA_LICENSE
If you do not agree with such terms, do not download the data.
<xarray.Dataset> Dimensions: (isobaricInhPa: 1, latitude: 32, longitude: 33, number: 1, step: 21, time: 730) Coordinates: * isobaricInhPa (isobaricInhPa) float64 500.0 * latitude (latitude) float64 53.5 53.25 53.0 52.75 ... 46.25 46.0 45.75 * longitude (longitude) float64 2.5 2.75 3.0 3.25 ... 10.0 10.25 10.5 * number (number) int64 0 * step (step) timedelta64[ns] 0 days 00:00:00 ... 5 days 00:00:00 * time (time) datetime64[ns] 2017-01-01 2017-01-02 ... 2018-12-31 valid_time (time, step) datetime64[ns] ... Data variables: z (number, time, step, isobaricInhPa, latitude, longitude) float32 ... Attributes: Conventions: CF-1.7 GRIB_centre: ecmf GRIB_centreDescription: European Centre for Medium-Range Weather Forecasts GRIB_edition: 1 GRIB_subCentre: 0 history: 2022-03-28T22:50 GRIB to CDM+CF via cfgrib-0.9.1... institution: European Centre for Medium-Range Weather Forecasts
1.4 - Processed surface variable forecasts
Processed surface variables can be obtained for each forecast date, both for the ensemble (51 members) and deterministic runs. A processed variable is either accumulated, averaged or filtered.
It includes:
Parameter name |
ECMWF key |
Remarks |
---|---|---|
tp6 |
||
sshf6 |
||
slhf6 |
||
ssr6 |
||
str6 |
||
cp6 |
||
mx2t6 |
||
mn2t6 |
||
ssrd6 |
||
strd6 |
||
10fg6 |
All these variables are accumulated or filtered over the last 6 hours preceding a given forecast timestamp. As a consequence, a `6’ was added to the ECMWF key to denote this.
Usage: The processed surface variables forecasts can be retrieved by calling
ds = cml.load_dataset('EUPPBench-training-data-gridded-forecasts-surface-processed', kind)
ds.to_xarray()
where the kind
argument allows to select the deterministic or ensemble forecasts, by setting it to 'highres'
or
'ensemble'
.
Example:
ds = cml.load_dataset('EUPPBench-training-data-gridded-forecasts-surface-processed', "highres")
ds.to_xarray()
By downloading data from this dataset, you agree to the terms and conditions defined at
https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/blob/main/DATA_LICENSE
If you do not agree with such terms, do not download the data.
<xarray.Dataset> Dimensions: (number: 1, time: 730, step: 20, surface: 1, latitude: 32, longitude: 33) Coordinates: * latitude (latitude) float64 53.5 53.25 53.0 52.75 ... 46.25 46.0 45.75 * longitude (longitude) float64 2.5 2.75 3.0 3.25 ... 9.75 10.0 10.25 10.5 * number (number) int64 0 * step (step) timedelta64[ns] 0 days 06:00:00 ... 5 days 00:00:00 * surface (surface) float64 0.0 * time (time) datetime64[ns] 2017-01-01 2017-01-02 ... 2018-12-31 valid_time (time, step) datetime64[ns] ... Data variables: cp6 (number, time, step, surface, latitude, longitude) float32 ... mn2t6 (number, time, step, surface, latitude, longitude) float32 ... mx2t6 (number, time, step, surface, latitude, longitude) float32 ... p10fg6 (number, time, step, surface, latitude, longitude) float32 ... slhf6 (number, time, step, surface, latitude, longitude) float32 ... sshf6 (number, time, step, surface, latitude, longitude) float32 ... ssr6 (number, time, step, surface, latitude, longitude) float32 ... ssrd6 (number, time, step, surface, latitude, longitude) float32 ... str6 (number, time, step, surface, latitude, longitude) float32 ... strd6 (number, time, step, surface, latitude, longitude) float32 ... tp6 (number, time, step, surface, latitude, longitude) float32 ... Attributes: Conventions: CF-1.7 GRIB_centre: ecmf GRIB_centreDescription: European Centre for Medium-Range Weather Forecasts GRIB_edition: 1 GRIB_subCentre: 0 history: 2022-03-25T11:54 GRIB to CDM+CF via cfgrib-0.9.1... institution: European Centre for Medium-Range Weather Forecasts
1.5 - Surface variable reforecasts
The surface variables for the ensemble reforecasts (11 members) can be obtained for each reforecast date. All the variables described at in the section 1.2 - Surface variable forecasts above are available.
Note
The ECMWF reforecasts are only available on dates corresponding to Mondays and Thursdays.
Usage: The surface variables reforecasts can be retrieved by calling
ds = cml.load_dataset('EUPPBench-training-data-gridded-reforecasts-surface')
ds.to_xarray()
Example:
ds = cml.load_dataset('EUPPBench-training-data-gridded-reforecasts-surface')
ds.to_xarray()
By downloading data from this dataset, you agree to the terms and conditions defined at
https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/blob/main/DATA_LICENSE
If you do not agree with such terms, do not download the data.
<xarray.Dataset> Dimensions: (time: 209, number: 11, year: 20, step: 21, surface: 1, latitude: 32, longitude: 33, depthBelowLandLayer: 1) Coordinates: * depthBelowLandLayer (depthBelowLandLayer) float64 0.0 * latitude (latitude) float64 53.5 53.25 53.0 ... 46.25 46.0 45.75 * longitude (longitude) float64 2.5 2.75 3.0 ... 10.0 10.25 10.5 * number (number) int64 0 1 2 3 4 5 6 7 8 9 10 * step (step) timedelta64[ns] 0 days 00:00:00 ... 5 days 00... * surface (surface) float64 0.0 * time (time) datetime64[ns] 2017-01-02 ... 2018-12-31 valid_time (time, year, step) datetime64[ns] ... * year (year) int64 1 2 3 4 5 6 7 8 ... 14 15 16 17 18 19 20 Data variables: (12/14) cape (time, number, year, step, surface, latitude, longitude) float32 ... cin (time, number, year, step, surface, latitude, longitude) float32 ... sd (time, number, year, step, surface, latitude, longitude) float32 ... stl1 (time, number, year, step, depthBelowLandLayer, latitude, longitude) float32 ... swvl1 (time, number, year, step, depthBelowLandLayer, latitude, longitude) float32 ... t2m (time, number, year, step, surface, latitude, longitude) float32 ... ... ... tcwv (time, number, year, step, surface, latitude, longitude) float32 ... u10 (time, number, year, step, surface, latitude, longitude) float32 ... u100 (time, number, year, step, surface, latitude, longitude) float32 ... v10 (time, number, year, step, surface, latitude, longitude) float32 ... v100 (time, number, year, step, surface, latitude, longitude) float32 ... vis (time, number, year, step, surface, latitude, longitude) float32 ... Attributes: Conventions: CF-1.7 GRIB_centre: ecmf GRIB_centreDescription: European Centre for Medium-Range Weather Forecasts GRIB_edition: 1 GRIB_subCentre: 0 history: 2022-07-08T08:03 GRIB to CDM+CF via cfgrib-0.9.1... institution: European Centre for Medium-Range Weather Forecasts
1.6 - Pressure level variable reforecasts
The variables on pressure level for the ensemble reforecasts (11 members) can be obtained for each reforecast date. All the variables described in the section 1.3 - Pressure level variable forecasts above are available.
Note
The ECMWF reforecasts are only available on dates corresponding to Mondays and Thursdays.
Usage: The pressure level variables reforecasts can be retrieved by calling
ds = cml.load_dataset('EUPPBench-training-data-gridded-reforecasts-pressure', level)
ds.to_xarray()
The level
argument is the pressure level, as a string or an integer.
Example:
ds = cml.load_dataset('EUPPBench-training-data-gridded-reforecasts-pressure', 500)
ds.to_xarray()
By downloading data from this dataset, you agree to the terms and conditions defined at
https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/blob/main/DATA_LICENSE
If you do not agree with such terms, do not download the data.
<xarray.Dataset> Dimensions: (isobaricInhPa: 1, latitude: 32, longitude: 33, number: 11, step: 21, time: 209, year: 20) Coordinates: * isobaricInhPa (isobaricInhPa) float64 500.0 * latitude (latitude) float64 53.5 53.25 53.0 52.75 ... 46.25 46.0 45.75 * longitude (longitude) float64 2.5 2.75 3.0 3.25 ... 10.0 10.25 10.5 * number (number) int64 0 1 2 3 4 5 6 7 8 9 10 * step (step) timedelta64[ns] 0 days 00:00:00 ... 5 days 00:00:00 * time (time) datetime64[ns] 2017-01-02 2017-01-05 ... 2018-12-31 valid_time (time, year, step) datetime64[ns] ... * year (year) int64 1 2 3 4 5 6 7 8 9 ... 12 13 14 15 16 17 18 19 20 Data variables: z (time, number, year, step, isobaricInhPa, latitude, longitude) float32 ... Attributes: Conventions: CF-1.7 GRIB_centre: ecmf GRIB_centreDescription: European Centre for Medium-Range Weather Forecasts GRIB_edition: 1 GRIB_subCentre: 0 history: 2022-04-15T20:40 GRIB to CDM+CF via cfgrib-0.9.1... institution: European Centre for Medium-Range Weather Forecasts
1.7 - Processed surface variable reforecasts
Processed surface variables as described in section 1.4 - Processed surface variable forecasts can also be obtained as ensemble reforecasts (11 members).
Note
The ECMWF reforecasts are only available on dates corresponding to Mondays and Thursdays.
Usage: The surface variables forecasts can be retrieved by calling
ds = cml.load_dataset('EUPPBench-training-data-gridded-reforecasts-surface-processed')
ds.to_xarray()
Example:
ds = cml.load_dataset('EUPPBench-training-data-gridded-reforecasts-surface-processed')
ds.to_xarray()
By downloading data from this dataset, you agree to the terms and conditions defined at
https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/blob/main/DATA_LICENSE
If you do not agree with such terms, do not download the data.
<xarray.Dataset> Dimensions: (time: 209, number: 11, year: 20, step: 20, surface: 1, latitude: 32, longitude: 33) Coordinates: * latitude (latitude) float64 53.5 53.25 53.0 52.75 ... 46.25 46.0 45.75 * longitude (longitude) float64 2.5 2.75 3.0 3.25 ... 9.75 10.0 10.25 10.5 * number (number) int64 0 1 2 3 4 5 6 7 8 9 10 * step (step) timedelta64[ns] 0 days 06:00:00 ... 5 days 00:00:00 * surface (surface) float64 0.0 * time (time) datetime64[ns] 2017-01-02 2017-01-05 ... 2018-12-31 valid_time (time, year, step) datetime64[ns] ... * year (year) int64 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Data variables: cp6 (time, number, year, step, surface, latitude, longitude) float32 ... mn2t6 (time, number, year, step, surface, latitude, longitude) float32 ... mx2t6 (time, number, year, step, surface, latitude, longitude) float32 ... p10fg6 (time, number, year, step, surface, latitude, longitude) float32 ... slhf6 (time, number, year, step, surface, latitude, longitude) float32 ... sshf6 (time, number, year, step, surface, latitude, longitude) float32 ... ssr6 (time, number, year, step, surface, latitude, longitude) float32 ... ssrd6 (time, number, year, step, surface, latitude, longitude) float32 ... str6 (time, number, year, step, surface, latitude, longitude) float32 ... strd6 (time, number, year, step, surface, latitude, longitude) float32 ... tp6 (time, number, year, step, surface, latitude, longitude) float32 ... Attributes: Conventions: CF-1.7 GRIB_centre: ecmf GRIB_centreDescription: European Centre for Medium-Range Weather Forecasts GRIB_edition: 1 GRIB_subCentre: 0 history: 2022-05-04T15:27 GRIB to CDM+CF via cfgrib-0.9.1... institution: European Centre for Medium-Range Weather Forecasts
1.8 - Static fields
Various static fields associated to the forecast grid can be obtained, with the purpose of serving as predictors for the postprocessing.
Note
For consistency with the rest of the dataset, we use the ECMWF parameters name, terminology and units here. However, please note that - except for the Surface Geopotential - the fields provided are from other non-ECMWF data sources evaluated at grid points. Currently, the main data source being used is the Copernicus Land Monitoring Service.
It includes:
Parameter name |
ECMWF key |
Remarks |
---|---|---|
landu |
Extracted from the CORINE 2018 dataset. Values and associated land type differ from the ECMWF one. Please look at the “legend” entry in the metadata for more details. |
|
mterh |
Extracted from the EU-DEMv1.1 data elevation model dataset. |
|
z |
The model orography can be obtained by dividing the surface geopotential by g=9.80665 ms \({}^{-2}\). |
Usage: The static fields can be retrieved by calling
ds = cml.load_dataset('EUPPBench-training-data-gridded-static-fields', parameter)
ds.to_xarray()
where the parameter
argument is a string with one of the ECMWF keys
described above. It is only possible to download one static field per
call.
Example:
ds = cml.load_dataset('EUPPBench-training-data-gridded-static-fields', 'mterh')
ds.to_xarray()
By downloading data from this dataset, you agree to the terms and conditions defined at
https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/blob/main/DATA_LICENSE
If you do not agree with such terms, do not download the data.
<xarray.Dataset> Dimensions: (latitude: 32, longitude: 33) Coordinates: * latitude (latitude) float64 53.5 53.25 53.0 52.75 ... 46.25 46.0 45.75 * longitude (longitude) float64 2.5 2.75 3.0 3.25 ... 9.75 10.0 10.25 10.5 Data variables: mterh (latitude, longitude) float64 ... Attributes: full_dataset_metadata: history: Retrieved from https://land.copernicus.eu/imagery... source: European Union, Copernicus Land Monitoring Servic...
2 - Stations Data
A dataset similar to the gridded one, but with station observations.
The stations EUPPBench postprocessing benchmark dataset contains ECMWF ensemble and deterministic forecasts at the grid point closest to the station locations, and covers the years 2017-2018.
It also contains the corresponding stations observations.
For some dates, it contains also reforecasts that covers 20 years of past forecasts recomputed with the most recent model version at the given date.
All the forecasts and reforecasts provided are the noon ECMWF runs.
The ensemble forecasts and reforecasts also contain by default the control run (the 0-th member).
5 countries are presently available: Belgium, Austria, France, Germany, The Netherlands.
There are 7 stations sub-datasets:
2.1 - Extreme Forecast Index
All the Extreme Forecast Index (EFI) variables can be obtained for each forecast date.
The same variables as in section 1.1 - Extreme Forecast Index are available.
The EFI are available for the model step ranges (in hours) 0-24, 24-48, 48-72, 72-96, 96-120.
Usage: The EFI variables can be retrieved by calling
ds = cml.load_dataset('EUPPBench-training-data-stations-forecasts-efi', country)
ds.to_xarray()
where the country
argument must be chosen amongst the list [belgium
, austria
, france
, germany
, netherlands
].
Example:
import climetlab as cml
ds = cml.load_dataset('EUPPBench-training-data-stations-forecasts-efi', 'austria')
ds.to_xarray()
By downloading data from this dataset, you agree to the terms and conditions defined at
https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/blob/main/DATA_LICENSE
If you do not agree with such terms, do not download the data.
<xarray.Dataset> Dimensions: (station_id: 4, number: 1, time: 730, step: 5, surface: 1) Coordinates: (12/15) model_altitude (station_id) float32 ... model_land_usage (station_id) int8 ... model_latitude (station_id) float64 ... model_longitude (station_id) float64 ... model_orography (station_id) float64 ... * number (number) int64 0 ... ... station_latitude (station_id) float64 ... station_longitude (station_id) float64 ... station_name (station_id) <U20 ... * step (step) timedelta64[ns] 1 days 2 days ... 4 days 5 days * surface (surface) float64 0.0 * time (time) datetime64[ns] 2017-01-01 ... 2018-12-31 Data variables: capei (station_id, number, time, step, surface) float32 ... capesi (station_id, number, time, step, surface) float32 ... fg10i (station_id, number, time, step, surface) float32 ... mn2ti (station_id, number, time, step, surface) float32 ... mx2ti (station_id, number, time, step, surface) float32 ... sfi (station_id, number, time, step, surface) float32 ... t2i (station_id, number, time, step, surface) float32 ... tpi (station_id, number, time, step, surface) float32 ... valid_time (time, step) datetime64[ns] ... ws10i (station_id, number, time, step, surface) float32 ... Attributes: Conventions: CF-1.7 GRIB_centre: ecmf GRIB_centreDescription: European Centre for Medium-Range Weather Forecasts GRIB_edition: 1 GRIB_subCentre: 0 history: 2022-04-26T15:54 GRIB to CDM+CF via cfgrib-0.9.1... institution: European Centre for Medium-Range Weather Forecasts land usage history: Retrieved from https://land.copernicus.eu/pan-eu... land usage legend: {1: {'label': '111 - Continuous urban fabric', '... land usage source: European Union, Copernicus Land Monitoring Servi... model altitude history: Retrieved from https://land.copernicus.eu/imager... model altitude source: European Union, Copernicus Land Monitoring Servi...
Note
By definition, observations are not available for Extreme Forecast Indices (EFI).
2.2 - Surface variable forecasts
The surface variables can be obtained for each forecast date, both for the ensemble (51 members) and deterministic runs.
The same variables as in section 1.2 - Surface variable forecasts are available.
Note
Only the variables t2m
, vis
and tcc
have presently station observations.
Usage: The surface variables forecasts can be retrieved by calling
ds = cml.load_dataset('EUPPBench-training-data-stations-forecasts-surface', kind, country)
ds.to_xarray()
where the kind
argument allows to select the
deterministic or ensemble forecasts, by setting it to 'highres'
or
'ensemble'
.
The country
argument must be chosen amongst the list [belgium
, austria
, france
, germany
, netherlands
].
Example:
ds = cml.load_dataset('EUPPBench-training-data-stations-forecasts-surface', "highres", "austria")
ds.to_xarray()
By downloading data from this dataset, you agree to the terms and conditions defined at
https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/blob/main/DATA_LICENSE
If you do not agree with such terms, do not download the data.
<xarray.Dataset> Dimensions: (station_id: 4, number: 1, time: 730, step: 21, surface: 1, depthBelowLandLayer: 1) Coordinates: (12/16) * depthBelowLandLayer (depthBelowLandLayer) float64 0.0 model_altitude (station_id) float32 ... model_land_usage (station_id) int8 ... model_latitude (station_id) float64 ... model_longitude (station_id) float64 ... model_orography (station_id) float64 ... ... ... station_latitude (station_id) float64 ... station_longitude (station_id) float64 ... station_name (station_id) <U20 ... * step (step) timedelta64[ns] 0 days 00:00:00 ... 5 days 00... * surface (surface) float64 0.0 * time (time) datetime64[ns] 2017-01-01 ... 2018-12-31 Data variables: (12/15) cape (station_id, number, time, step, surface) float32 ... cin (station_id, number, time, step, surface) float32 ... sd (station_id, number, time, step, surface) float32 ... stl1 (station_id, number, time, step, depthBelowLandLayer) float32 ... swvl1 (station_id, number, time, step, depthBelowLandLayer) float32 ... t2m (station_id, number, time, step, surface) float32 ... ... ... u10 (station_id, number, time, step, surface) float32 ... u100 (station_id, number, time, step, surface) float32 ... v10 (station_id, number, time, step, surface) float32 ... v100 (station_id, number, time, step, surface) float32 ... valid_time (time, step) datetime64[ns] ... vis (station_id, number, time, step, surface) float32 ... Attributes: Conventions: CF-1.7 GRIB_centre: ecmf GRIB_centreDescription: European Centre for Medium-Range Weather Forecasts GRIB_edition: 1 GRIB_subCentre: 0 history: 2022-07-08T12:53 GRIB to CDM+CF via cfgrib-0.9.1... institution: European Centre for Medium-Range Weather Forecasts land usage history: Retrieved from https://land.copernicus.eu/pan-eu... land usage legend: {1: {'label': '111 - Continuous urban fabric', '... land usage source: European Union, Copernicus Land Monitoring Servi... model altitude history: Retrieved from https://land.copernicus.eu/imager... model altitude source: European Union, Copernicus Land Monitoring Servi...
2.3 - Pressure level variable forecasts
The variables on pressure level can be obtained for each forecast date, both for the ensemble (51 members) and deterministic runs.
The same variables as in section 2.3 - Pressure level variable forecasts are available.
Note
For obvious reasons, station observations are not available on pressure levels.
Usage: The pressure level variables forecasts can be retrieved by calling
ds = cml.load_dataset('eumetnet-postprocessing-benchmark-EUPP-training-data-stations-forecasts-pressure', level, kind, country)
ds.to_xarray()
where the level
argument is the pressure level, as a string or an integer. The kind
argument
allows to select the deterministic or ensemble forecasts, by setting it
to 'highres'
or 'ensemble'
.
The country
argument must be chosen amongst the list [belgium
, austria
, france
, germany
, netherlands
].
Example:
ds = cml.load_dataset('EUPPBench-training-data-stations-forecasts-pressure', 500, "highres", "austria")
ds.to_xarray()
By downloading data from this dataset, you agree to the terms and conditions defined at
https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/blob/main/DATA_LICENSE
If you do not agree with such terms, do not download the data.
<xarray.Dataset> Dimensions: (isobaricInhPa: 1, station_id: 4, number: 1, step: 21, time: 730) Coordinates: (12/15) * isobaricInhPa (isobaricInhPa) float64 500.0 model_altitude (station_id) float32 ... model_land_usage (station_id) int8 ... model_latitude (station_id) float64 ... model_longitude (station_id) float64 ... model_orography (station_id) float64 ... ... ... station_land_usage (station_id) int8 ... station_latitude (station_id) float64 ... station_longitude (station_id) float64 ... station_name (station_id) <U20 ... * step (step) timedelta64[ns] 0 days 00:00:00 ... 5 days 00:... * time (time) datetime64[ns] 2017-01-01 ... 2018-12-31 Data variables: valid_time (time, step) datetime64[ns] ... z (station_id, number, time, step, isobaricInhPa) float32 ... Attributes: Conventions: CF-1.7 GRIB_centre: ecmf GRIB_centreDescription: European Centre for Medium-Range Weather Forecasts GRIB_edition: 1 GRIB_subCentre: 0 history: 2022-03-28T22:50 GRIB to CDM+CF via cfgrib-0.9.1... institution: European Centre for Medium-Range Weather Forecasts land usage history: Retrieved from https://land.copernicus.eu/pan-eu... land usage legend: {1: {'label': '111 - Continuous urban fabric', '... land usage source: European Union, Copernicus Land Monitoring Servi... model altitude history: Retrieved from https://land.copernicus.eu/imager... model altitude source: European Union, Copernicus Land Monitoring Servi...
2.4 - Processed surface variable forecasts
Processed surface variables can be obtained for each forecast date, both for the ensemble (51 members) and deterministic runs. A processed variable is either accumulated, averaged or filtered.
The same variables as in section 2.4 - Processed surface variable forecasts are available.
Note
Only the variables tp6
and 10fg6
have presently station observations.
Usage: The processed surface variables forecasts can be retrieved by calling
ds = cml.load_dataset('EUPPBench-training-data-stations-forecasts-surface-processed', kind, country)
ds.to_xarray()
where the kind
argument allows to select the deterministic or ensemble forecasts, by setting it to 'highres'
or
'ensemble'
.
The country
argument must be chosen amongst the list [belgium
, austria
, france
, germany
, netherlands
].
Example:
ds = cml.load_dataset('EUPPBench-training-data-stations-forecasts-surface-processed', "highres", "austria")
ds.to_xarray()
By downloading data from this dataset, you agree to the terms and conditions defined at
https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/blob/main/DATA_LICENSE
If you do not agree with such terms, do not download the data.
<xarray.Dataset> Dimensions: (station_id: 4, number: 1, time: 730, step: 20, surface: 1) Coordinates: (12/16) model_altitude (station_id) float32 ... model_land_usage (station_id) int8 ... model_latitude (station_id) float64 ... model_longitude (station_id) float64 ... model_orography (station_id) float64 ... * number (number) int64 0 ... ... station_longitude (station_id) float64 ... station_name (station_id) <U20 ... * step (step) timedelta64[ns] 0 days 06:00:00 ... 5 days 00:... * surface (surface) float64 0.0 * time (time) datetime64[ns] 2017-01-01 ... 2018-12-31 valid_time (time, step) datetime64[ns] ... Data variables: cp6 (station_id, number, time, step, surface) float32 ... mn2t6 (station_id, number, time, step, surface) float32 ... mx2t6 (station_id, number, time, step, surface) float32 ... p10fg6 (station_id, number, time, step, surface) float32 ... slhf6 (station_id, number, time, step, surface) float32 ... sshf6 (station_id, number, time, step, surface) float32 ... ssr6 (station_id, number, time, step, surface) float32 ... ssrd6 (station_id, number, time, step, surface) float32 ... str6 (station_id, number, time, step, surface) float32 ... strd6 (station_id, number, time, step, surface) float32 ... tp6 (station_id, number, time, step, surface) float32 ... Attributes: Conventions: CF-1.7 GRIB_centre: ecmf GRIB_centreDescription: European Centre for Medium-Range Weather Forecasts GRIB_edition: 1 GRIB_subCentre: 0 history: 2022-03-25T11:54 GRIB to CDM+CF via cfgrib-0.9.1... institution: European Centre for Medium-Range Weather Forecasts land usage history: Retrieved from https://land.copernicus.eu/pan-eu... land usage legend: {1: {'label': '111 - Continuous urban fabric', '... land usage source: European Union, Copernicus Land Monitoring Servi... model altitude history: Retrieved from https://land.copernicus.eu/imager... model altitude source: European Union, Copernicus Land Monitoring Servi...
2.5 - Surface variable reforecasts
The surface variables for the ensemble reforecasts (11 members) can be obtained for each reforecast date. All the variables described at in the section 1.2 - Surface variable forecasts above are available.
Note
The ECMWF reforecasts are only available on dates corresponding to Mondays and Thursdays.
Note
Only the variables t2m
, vis
and tcc
have presently station observations.
Usage: The surface variables reforecasts can be retrieved by calling
ds = cml.load_dataset('EUPPBench-training-data-stations-reforecasts-surface', country)
ds.to_xarray()
where the country
argument must be chosen amongst the list [belgium
, austria
, france
, germany
, netherlands
].
Example:
ds = cml.load_dataset('EUPPBench-training-data-stations-reforecasts-surface', "austria")
ds.to_xarray()
By downloading data from this dataset, you agree to the terms and conditions defined at
https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/blob/main/DATA_LICENSE
If you do not agree with such terms, do not download the data.
<xarray.Dataset> Dimensions: (station_id: 4, time: 209, number: 11, year: 20, step: 21, surface: 1, depthBelowLandLayer: 1) Coordinates: (12/17) * depthBelowLandLayer (depthBelowLandLayer) float64 0.0 model_altitude (station_id) float32 ... model_land_usage (station_id) int8 ... model_latitude (station_id) float64 ... model_longitude (station_id) float64 ... model_orography (station_id) float64 ... ... ... station_longitude (station_id) float64 ... station_name (station_id) <U20 ... * step (step) timedelta64[ns] 0 days 00:00:00 ... 5 days 00... * surface (surface) float64 0.0 * time (time) datetime64[ns] 2017-01-02 ... 2018-12-31 * year (year) int64 1 2 3 4 5 6 7 8 ... 14 15 16 17 18 19 20 Data variables: (12/15) cape (station_id, time, number, year, step, surface) float32 ... cin (station_id, time, number, year, step, surface) float32 ... sd (station_id, time, number, year, step, surface) float32 ... stl1 (station_id, time, number, year, step, depthBelowLandLayer) float32 ... swvl1 (station_id, time, number, year, step, depthBelowLandLayer) float32 ... t2m (station_id, time, number, year, step, surface) float32 ... ... ... u10 (station_id, time, number, year, step, surface) float32 ... u100 (station_id, time, number, year, step, surface) float32 ... v10 (station_id, time, number, year, step, surface) float32 ... v100 (station_id, time, number, year, step, surface) float32 ... valid_time (time, year, step) datetime64[ns] ... vis (station_id, time, number, year, step, surface) float32 ... Attributes: Conventions: CF-1.7 GRIB_centre: ecmf GRIB_centreDescription: European Centre for Medium-Range Weather Forecasts GRIB_edition: 1 GRIB_subCentre: 0 history: 2022-07-08T08:03 GRIB to CDM+CF via cfgrib-0.9.1... institution: European Centre for Medium-Range Weather Forecasts land usage history: Retrieved from https://land.copernicus.eu/pan-eu... land usage legend: {1: {'label': '111 - Continuous urban fabric', '... land usage source: European Union, Copernicus Land Monitoring Servi... model altitude history: Retrieved from https://land.copernicus.eu/imager... model altitude source: European Union, Copernicus Land Monitoring Servi...
2.6 - Pressure level variable reforecasts
The variables on pressure level for the ensemble reforecasts (11 members) can be obtained for each reforecast date. All the variables described in the section 1.3 - Pressure level variable forecasts above are available.
Note
The ECMWF reforecasts are only available on dates corresponding to Mondays and Thursdays.
Note
For obvious reasons, station observations are not available on pressure levels.
Usage: The pressure level variables reforecasts can be retrieved by calling
ds = cml.load_dataset('EUPPBench-training-data-stations-reforecasts-pressure', level, country)
ds.to_xarray()
The level
argument is the pressure level, as a string or an integer.
The country
argument must be chosen amongst the list [belgium
, austria
, france
, germany
, netherlands
].
Example:
ds = cml.load_dataset('EUPPBench-training-data-stations-reforecasts-pressure', 500, "austria")
ds.to_xarray()
By downloading data from this dataset, you agree to the terms and conditions defined at
https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/blob/main/DATA_LICENSE
If you do not agree with such terms, do not download the data.
<xarray.Dataset> Dimensions: (isobaricInhPa: 1, station_id: 4, number: 11, step: 21, time: 209, year: 20) Coordinates: (12/16) * isobaricInhPa (isobaricInhPa) float64 500.0 model_altitude (station_id) float32 ... model_land_usage (station_id) int8 ... model_latitude (station_id) float64 ... model_longitude (station_id) float64 ... model_orography (station_id) float64 ... ... ... station_latitude (station_id) float64 ... station_longitude (station_id) float64 ... station_name (station_id) <U20 ... * step (step) timedelta64[ns] 0 days 00:00:00 ... 5 days 00:... * time (time) datetime64[ns] 2017-01-02 ... 2018-12-31 * year (year) int64 1 2 3 4 5 6 7 8 ... 13 14 15 16 17 18 19 20 Data variables: valid_time (time, year, step) datetime64[ns] ... z (station_id, time, number, year, step, isobaricInhPa) float32 ... Attributes: Conventions: CF-1.7 GRIB_centre: ecmf GRIB_centreDescription: European Centre for Medium-Range Weather Forecasts GRIB_edition: 1 GRIB_subCentre: 0 history: 2022-04-15T20:40 GRIB to CDM+CF via cfgrib-0.9.1... institution: European Centre for Medium-Range Weather Forecasts land usage history: Retrieved from https://land.copernicus.eu/pan-eu... land usage legend: {1: {'label': '111 - Continuous urban fabric', '... land usage source: European Union, Copernicus Land Monitoring Servi... model altitude history: Retrieved from https://land.copernicus.eu/imager... model altitude source: European Union, Copernicus Land Monitoring Servi...
2.7 - Processed surface variable reforecasts
Processed surface variables as described in section 1.4 - Processed surface variable forecasts can also be obtained as ensemble reforecasts (11 members).
Note
The ECMWF reforecasts are only available on dates corresponding to Mondays and Thursdays.
Note
Only the variables tp6
and 10fg6
have presently station observations.
Usage: The surface variables forecasts can be retrieved by calling
ds = cml.load_dataset('EUPPBench-training-data-stations-reforecasts-surface-processed', country)
ds.to_xarray()
The country
argument must be chosen amongst the list [belgium
, austria
, france
, germany
, netherlands
].
Example:
ds = cml.load_dataset('EUPPBench-training-data-stations-reforecasts-surface-processed', "austria")
ds.to_xarray()
By downloading data from this dataset, you agree to the terms and conditions defined at
https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/blob/main/DATA_LICENSE
If you do not agree with such terms, do not download the data.
<xarray.Dataset> Dimensions: (station_id: 4, time: 209, number: 11, year: 20, step: 20, surface: 1) Coordinates: (12/17) model_altitude (station_id) float32 ... model_land_usage (station_id) int8 ... model_latitude (station_id) float64 ... model_longitude (station_id) float64 ... model_orography (station_id) float64 ... * number (number) int64 0 1 2 3 4 5 6 7 8 9 10 ... ... station_name (station_id) <U20 ... * step (step) timedelta64[ns] 0 days 06:00:00 ... 5 days 00:... * surface (surface) float64 0.0 * time (time) datetime64[ns] 2017-01-02 ... 2018-12-31 valid_time (time, year, step) datetime64[ns] ... * year (year) int64 1 2 3 4 5 6 7 8 ... 13 14 15 16 17 18 19 20 Data variables: cp6 (station_id, time, number, year, step, surface) float32 ... mn2t6 (station_id, time, number, year, step, surface) float32 ... mx2t6 (station_id, time, number, year, step, surface) float32 ... p10fg6 (station_id, time, number, year, step, surface) float32 ... slhf6 (station_id, time, number, year, step, surface) float32 ... sshf6 (station_id, time, number, year, step, surface) float32 ... ssr6 (station_id, time, number, year, step, surface) float32 ... ssrd6 (station_id, time, number, year, step, surface) float32 ... str6 (station_id, time, number, year, step, surface) float32 ... strd6 (station_id, time, number, year, step, surface) float32 ... tp6 (station_id, time, number, year, step, surface) float32 ... Attributes: Conventions: CF-1.7 GRIB_centre: ecmf GRIB_centreDescription: European Centre for Medium-Range Weather Forecasts GRIB_edition: 1 GRIB_subCentre: 0 history: 2022-05-04T15:27 GRIB to CDM+CF via cfgrib-0.9.1... institution: European Centre for Medium-Range Weather Forecasts land usage history: Retrieved from https://land.copernicus.eu/pan-eu... land usage legend: {1: {'label': '111 - Continuous urban fabric', '... land usage source: European Union, Copernicus Land Monitoring Servi... model altitude history: Retrieved from https://land.copernicus.eu/imager... model altitude source: European Union, Copernicus Land Monitoring Servi...
3 - Getting the observations corresponding to the (re)forecasts
Once obtained, the observations (if available) corresponding to the downloaded forecasts or reforecasts
can be retrieved in the xarray format by
using the get_observations_as_xarray
method:
ds = cml.load_dataset('EUPPBench-training-data-stations-reforecasts-surface-processed', "austria")
obs = ds.get_observations_as_xarray()
obs
<xarray.Dataset> Dimensions: (station_id: 4, time: 209, year: 20, step: 20) Coordinates: altitude (station_id) float64 ... land_usage (station_id) int8 ... latitude (station_id) float64 ... longitude (station_id) float64 ... * station_id (station_id) int64 11101 11105 11308 11312 station_name (station_id) <U20 ... * step (step) timedelta64[ns] 0 days 06:00:00 ... 5 days 00:00:00 * time (time) datetime64[ns] 2017-01-02 2017-01-05 ... 2018-12-31 * year (year) int64 1 2 3 4 5 6 7 8 9 ... 12 13 14 15 16 17 18 19 20 Data variables: p10fg6 (time, year, step, station_id) float64 ... tp6 (time, year, step, station_id) float64 ... Attributes: full_dataset_metadata: history: Gathered and compiled by Markus Dabernig (ZAMG). land usage history: Retrieved from https://land.copernicus.eu/pan-eur... land usage legend: {1: {'label': '111 - Continuous urban fabric', 'n... land usage source: European Union, Copernicus Land Monitoring Servic... source: ZAMG, Zentralanstalt für Meteorologie und Geodyna...
4 - Explanation of the metadata
For all data, attributes specifying the sources and the license are always present. Depending on the kind of dataset, dimensions and information are embedded in the data as follow:
Gridded data
The following metadata are available in the gridded forecast, reforecast and observation data:
Metadata |
Description |
---|---|
latitude |
Latitude of the grid points. |
longitude |
Longitude of the grid points. |
depthBelowLandLayer |
Layer below the surface (valid for some variables only, here there is only the upper surface level). |
number |
Number of the ensemble member. The 0-th member is the control run. Also present in observation for compatibility reasons, but set to 0. |
time |
Forecast or reforecast date (reforecasts are only issued on Mondays and Thursdays). |
year |
Dimension to identify the year in the past, year=1 means a forecast valid 20 years ago at the reforecast day and month, year=20 means a forecast valid one year before the reforecast date. Only valid for reforecasts. |
step |
Step of the forecast (the lead time). |
surface |
Layer of the variable considered (here there is just one, at the surface). |
isobaricInhPa |
Pressure level in hectopascal (or millibar). |
valid_time |
Actual time and date of the corresponding forecast data. |
Note
Bold metadata denotes dimensions indexing the datasets.
Stations data
For station forecast and reforecast data, the following metadata are available:
Metadata |
Description |
---|---|
station_latitude |
Latitude of the station. |
station_longitude |
Longitude of the station. |
station_altitude |
Altitude of the station (in meter). |
station_id |
Unique identifier of the station. |
depthBelowLandLayer |
Layer below the surface (valid for some variables only, here there is only the upper surface level). |
number |
Number of the ensemble member. The 0-th member is the control run. Also present in observation for compatibility reasons, but set to 0. |
time |
Forecast or reforecast date (reforecasts are only issued on Mondays and Thursdays). |
year |
Dimension to identify the year in the past, year=1 means a forecast valid 20 years ago at the reforecast day and month, year=20 means a forecast valid one year before the reforecast date. Only valid for reforecasts. |
step |
Step of the forecast (the lead time). |
surface |
Layer of the variable considered (here there is just one, at the surface). |
isobaricInhPa |
Pressure level in hectopascal (or millibar). |
station_land_usage |
Land usage at the station location, extracted from the CORINE 2018 dataset. |
station_name |
Name of the station. |
model_latitude |
Latitude of the model grid point. |
model_longitude |
Longitude of the model grid point. |
model_altitude |
True altitude (in meter) of the model grid point, extracted from the EU-DEMv1.1 data elevation model dataset. |
model_orography |
Surface height (in meter) in the model at the model grid point. |
model_land_usage |
Land usage at the model grid point, extracted from the CORINE 2018 dataset. |
valid_time |
Actual time and date of the corresponding forecast data. |
Note
The metadata with `model’ in their name indicate properties of the model grid point the closest to the station location, and at which the forecasts corresponding to the station observations was extracted from the gridded dataset.
For the station observations, the following metadata are available:
Metadata |
Description |
---|---|
altitude |
Altitude of the station (in meter). |
land_usage |
Land usage at the station location, extracted from the CORINE 2018 dataset. |
latitude |
Latitude of the station. |
longitude |
Longitude of the station. |
station_id |
Unique identifier of the station. |
station_name |
Name of the station. |
step |
Step of the forecast (the lead time). |
time |
Forecast or reforecast date (reforecasts are only issued on Mondays and Thursdays). |
5 - Major ECMWF model changes
In 2017 and 2018, there were 2 model changes of the ECMWF model on total:
Implementation date |
Summary of changes |
Resolution |
Full IFS documentation |
---|---|---|---|
05-Jun-2018 |
Unchanged |
||
11-Jul-17 |
Unchanged |
Source: https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model
Tips & Tricks
Saving the data to a NetCDF file
This is particularly useful if one wants to reuse the data with another programming language.
For example, if one has downloaded the observations shown in section 3 - Getting the observations corresponding to the (re)forecasts,
one can save them to disk by using the xarray.Dataset.to_netcdf()
functionality of the xarray Dataset
:
ds = cml.load_dataset('EUPPBench-training-data-stations-reforecasts-surface-processed', "austria")
obs = ds.get_observations_as_xarray()
obs.to_netcdf('austria_reforecasts.nc')
Finding the units of a given data
In general, we align with the units of the ECMWF data. You can find the particular units of a given data by clicking on the parameter’s name in the table above. For many variables, the units are also available in the metadata of the forecasts. For example, the following code snippet show how to retrieve the units of surface variable in the station dataset:
ds = cml.load_dataset('EUPPBench-training-data-stations-reforecasts-surface', "austria")
fcs = ds.to_xarray()
fcs.v100.units
'm s**-1'
Data License
See the DATA_LICENSE file.
Station observations were provided by European National Meteorological Services within the framework of their open data policy, and are sourced in the metadata of the corresponding datasets.
Swiss station data are part of this dataset but are presently restricted. These station data may be obtained from IDAWEB at MeteoSwiss and we are not entitled to provide it online. Registration with IDAWEB can be initiated here. Please also read these information.